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This paper demonstrates the derivation of Hodgkin-Huxley-like equations from 
the Fokker-Planck equation. The primary result is that instead of the familiar 
g r =  ~,rn 4 equation expressing the potassium conductance as a function of the 
variable n which obeys a first order differential equation, the expression 
gx= g o e x p [ L 2 - ( n - L ) 2 ] ,  where L=2.7, is to be used. This form is obtained 
by solving analytically an approximate solution to a Fokker-Planck partial 
difference equation. Instead of the Hodgkin-Huxley interpretation as the prob- 
ability of occupying the conducting state, the parameter n(t) is now interpreted 
as the position of the "peak" of the population distribution function P(N, t), 
which changes in time described by the Fokker-Planck equation. 

This new approach enables close fitting of the experimental voltage clamp 
data for potassium conductance. In addition, the Cole-Moore shift paradox can 
be quantitatively explained in terms of the shift of the distribution function 
P(N, t) by the initial clamped transmembrane potential Vs before the final 
clamped transmembrane potential V/ is applied, thus increasing the time 
necessary for the establishment of equilibrium. 

KEY WORDS: Fokker-Planck equation; Gaussian distribution; Hodgkin- 
Huxley model; Cole-Moore shift. 

1. I N T R O D U C T I O N  

It  is well  k n o w n  tha t  a l t h o u g h  the  H o d g k i n - H u x l e y  ( H H )  e q u a t i o n s  ~1) are  

very  successful  in desc r ib ing  the  b e h a v i o r  of  ion  c o n d u c t a n c e s  of  the  a x o n  

m e m b r a n e  in an  electr ic  field, the  exac t  phys ica l  m e c h a n i s m  f rom w h i c h  the  
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equations are derived is still not understood. For example, to explain the 
sigmoidal behavior of the increase of potassium conductance, an ad hoc 
variable (n, which obeys first order kinetics) is raised to a 4th power so 
that the theory matches the experimental data. Furthermore, to explain the 
existence of the 4th power, four hypothetical particles controlling the open- 
ing of the gate of the potassium channel are introduced. Indeed, after Cole 
and Moore's discovery ~2) which showed that the HH equations have dif- 
ficulty in describing the voltage step response of the potassium channel 
conductance from a hyperpolarized state unless the power of the n(t) 
variable is increased to 25, the validity of the particle interaction model 
has been seriously doubted. Many different models (Hoyt, ~3) Goldman, ~4) 
Tille, ~5) Wobschall, ~6) Moore and Cox, ~7) Hille, ~s) Lo, (9) Strandberg, t~~ 
Liebovitch et aL, ~ )  and several works in Abbott et al. t~2)) have been 
proposed in an attempt to improve the description of experimental data. 
Some involve complicated systems of intermediate chemical reactions 
which lead to systems of coupled differential equations, while some other 
represent the ion conductances as a convolution integral of the voltage 
with a-kerfiel which absorbs the complicated underlying dynamics. Though 
these thodels fit equally the experimental data, their complicated equations 
do not provide an easy interpretation of the physical process governing the 
nature of the ion conductance channels. 

The present work chooses to tackle this problem along the physical 
chemical line of approach which often plays a major role in biology as 
expressed by F. Crick, "Eventually one may hope to have the whole of 
biology explained in terms of the level below it... in terms of standard 
bonds of chemistry." No new assumptions or complicated reaction 
mechanisms will be introduced. The present theory is based on the fact that 
the ion conductance channel must necessarily be a macromolecule which 
can exist in many different geometrical configurations (Strandberg~3)). As 
each configuration has a specific conductance, the total ion conductance 
can be written as an ensemble average over the entire population of ion 
conductance channels. The present model thus reduces to a familiar 
problem in deformation kinetics of macromolecules under the influence of 
an external force which, in this case, is the electric field produced by the 
transmembrane potential V(t). 

2. A P P L I C A T I O N  OF D E F O R M A T I O N  K I N E T I C S  

The formulation in this section follows closely Eyring's approach (~4) to 
kinetics of plastic deformation. In his theory, the molecule to be studied is 
described by a certain reaction coordinate q and free energy E(q) which 
characterizes a system of consecutive energy barriers. The magnitudes of 
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these energy barriers are determined by the molecular structure as well as 
the presence of external "forces" (e.g., an electric field or a mechanical 
strain) acting or~ the molecules and leading to their deformation. Standard 
reaction rate theory is used in formulating the dynamics of the system. 

For the present application to ion conductance channel, let the reac- 
tion coordinate q range from - ~  to ~ and the free energy E(q) be con- 
sisted of three terms: 

1. A term El(V) sin2(nq/D) which represents the energy barriers 
separated by the characteristic distance D (in reaction coordinate space). 
Here, E~(V) is the height of the potential barrier as a function of the mem- 
brane potential V. 

2. A term E2(V)(q/D) 2 which represents the elastic behavior of the 
macromolecule. E2( V)/D 2 constitutes the proportionality constant. 

3. A term -2E3(V) q/D which represents the effect of the transmem- 
brane potential V on the free energy of the macromolecule. 

The total energy E(q) is hence given by 

E(q) = E~( V) sin2(nq/D) + E2(V)(q/D) 2 -  2E3(V) q/D. (1) 

In summary, the present model assumes by and large that each ion channel 
is described by a potential energy function consisting of three parts: a fine 
grained up and down varying part in the reaction coordinate to model the 
microscopic configuration energy, a Hooke's law term to model the energy 
change due to the elastic deformation of the channel macromolecule in 
reaction coordinate, and a linear term to account for the displacement in 
reaction coordinate of the minimum energy point as a result of the applied 
voltage. These assumed terms are quite standard. As will be shown later, 
they would produce a kinetics model capable of explaining the HH curves 
and the Cole-Moore shift. Figure 1 shows an example of the free energy 
E(q) as a function of the reaction coordinate x for D =  1, E~(V)=0.1, 
E2(V) = 0.005, and E3(V) = - 0.01. 

Kinetic equations similar to the HH equations can be derived using 
standard reaction rate theory with the above expression. Let E~(V), EE(V) 
and E3(V) be such that the curvature of E(q) is dominated by the rapid 
oscillating term sin2(nq/D). Hence, local minimums and maximums of E(q) 
can be approximated to occur respectively at coordinates q ' =  ND, where 
sin2(nq'/D) - 0, and at coordinates q" = ND + D/2, where sin2(nq"/D) = 1, 
with N being any positive or negative integer. A molecule passing from a 
local minimum state q = ND to a neighboring minimum state q = (N + 1 )D 
has to overcome the energy barrier between the two minimums at 
q = (ND + D/2). According to reaction rate theory, this energy barrier then 
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Fig. 1. Examples of E2( V)(q/D)'-, -2E3(V)(q/D), and the Free Energy E(q). 

dictates the rate k+  ( N D )  at which molecules at state q = N D  transform to 
state q = (N + 1 ) D, 

k + ( N D )  = koe  - [ E ( N D  + D / 2 ) -  E { N D ) ] / k o T  (2) 

Similarly, the rate k _ ( N D )  at which molecules at the state at q - - N D  trans- 
form to the state at q = ( N - 1 ) D  is given by 

k _  ( N D  ) = ko e - [ F.~ ND-- D/2) - E(ND)  ] / k a T  (3) 

In Eqs. (2) and (3), ko is a proportionali ty constant, k s  is the Boltzman's 
constant, T is the temperature, and E( N D  + D/2 ) - E( N D  ) and E( N D  - D/2 ) - 
E ( N D )  are the respective heights of the barrier over which the molecule has 
to pass in order to transform from q = N D  to the neighboring states at 
q = ( N +  1)D and q = ( N - 1 ) D .  Equation (1) yields 

E ( N D  + D / 2 ) -  E ( N D ) =  E l ( V )  sin2(Nrc + z~ /2 ) -E l (V)  sinZ(Nrt) 

+ Ez( V ) ( N  + 1/2 ) 2 _ E z ( V )  N 2 

-- 2E3( V)(N + 1/2) + 2E3(V) N 

= El (V)  + Ez(V) N -  E3(V), (4) 



Improved Hodgkin-Huxley Model for K Channel 1001 

and 

E ( N D - D / 2 ) -  E(ND)= El( V ) -  E2( V)N + E3(V) (5) 

where the term E2( V)/4 has been neglected as it is much smaller than 
E2( V)N for N appreciably larger than 1. Substituting Eqs. (4) and (5) into 
Eqs. (2) and (3) yields 

k+(ND) =K( V) e-tE2(v)lv-E3(v)l/knr=K( V) e -ar (6) 

and 

k_ ( ND ) = K(V) e +a( r/)(N- ~7( V)) (7) 

where 

K(V) = ko e-E~(v)/knr (8) 

a(V) = E2( V)/k n T (9) 

G(V) = E3( V)/E2(V). (10) 

The physical interpretation of Eqs. (6) and (7) is that the forward rate 
constant k+(ND) and backward rate constant k_(ND) are shifted 
exponentially by the quantity G(V) for the transition. Here, K(V), a(V), 
G(V) are functions of the transmembrane potential V, and k+(ND) and 
k_(ND) are functions of N and V. From now on k+(ND) will be denoted 
by k+(N, V) and k_(ND) by k_(N, V). Note that V may depend on t, i.e., 
V= V(t). 

Since the total number of molecules is conserved, the population dis- 
tribution function P(N, t) satisfies 

d 
dtP(N, t )= - [k+(N, V)+k_(N,  V)] P ( N , t ) + k + ( N - 1 ,  V ) P ( N - I , t )  

+ k_(N + 1, V) P(N + 1, t) (11) 

The reader can easily identify this kinetic equation as the familiar Fokker- 
Planck equation encountered in many branches of statistical physics as well 
as chemistry. This partial difference equation describes how the population 
distribution function P(N, t) evolves as the transmembrane potential V(t) 
changes in time. A temporal change in V(t) causes a change in the rate 
constant functions k+(N, V(t)) and k_(N, V(t)), and results in a re-dis- 
tribution of the population of the macromolecules among the different 
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states N. In effect, the population distribution function P(N, t) "adapts" 
to the change in k +(N, V(t)) and k_(N, V(t)) as V(t) changes. The 
phenomenon can be visualized as a wave moving in the state space labeled 
by index N, seeking the equilibrium position as determined by the rate con- 
stants k+(N, V(t)) and k_(N, V(t)). 

Substituting Eqs. (6) and (7) into Eq. (11) yields a modified form of 
the HH equations, 

K(V)_I d P(N, t)= - -[e-a(V)(N-G(V))  + e a(V)(N-G(V))] P(N, t) 

+ e-a(ro(~v-c~v)-~)P(N- 1, t) 

W e a(V)(N-o(V)+ ~)P(N + 1, t) (12) 

In order to relate Eq. (12) to experimental data, the total conductance 
gK(t) is expressed as a sum of products of the population distribution func- 
tion evaluated at state N and its corresponding conductance g(N), 

4 - 0 o  

gK(t)= ~ g(N)P(N,  t) (13) 
N ' -  ~ o o  

The approach here then amounts to determination of a(V), G(V), K(V), 
and g(N), - ~  < N <  + ~ ,  so that the resultant gK(t) from Eqs. (12) and 
(13) matches with the experimental conductances. It is important to 
emphasize that up to now except for the standard ones regarding the free 
energy E(q), the present approach to the HH problem is completely 
general and free from any specific assumptions. In the next section, we will 
introduce some assumptions in order to obtain an approximate solution for 
the potassium channel. 

3. A P P R O X I M A T E  S O L U T I O N  FOR THE P O T A S S I U M  
C H A N N E L  

The first assumption in arriving an approximate solution for the 
potassium conductance is: 

Assumpt ion 1. The elastic behavior of the macromolecule is inde- 
pendent of the applied voltage, i.e., Ez(V) and hence a(V) are constant. 
Specifically, let 

a(V) = a o 
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With this assumption, Eq. (12) becomes 

K(V)_ 1 d P( N, t)= -- [ e -a~ v)) + e ~~ v))] P( N, t) 

+ e-a~ - 1, t) 

+ e ~ ~)P(N + 1, t) (14) 

the solution of which is now sought. Two special cases are examined first. 
When the transmembrane potential V(t) is zero, there is no perturbation 
on the free energy of the macromolecule due to the electric field. The terms 
E3( V= 0) and hence G( V= 0) are both zero. P(N, t)= Pi(N) = Po e-a~ is 
thus a particular solution of Eq. (14). Po is the normalization constant such 
that the sum of P(N, t) over N from - ~  to + ~ is equal to the total pop- 
ulation Ptota~ of macromolecules. Ptota~ is an invariant quantity constant in 
time since the number of macromolecules are conserved in the process. 
When the potential is clamped, i.e., V(t)= Vf, the terms E3( V= Vf) and 
G( V= V f  ) a r e  both constant, P(N, t ) = P f ( N ) =  Poe-ao(N-O/)2 is another 
particular solution of Eq. (14) where Gf is the constant value of G( V = V:). 
Hence, if the transmembrane potential is to vary from V= 0 at time t = 0 
to some equilibrium value V= Vy at time t = ~ ,  P(N, t) would vary from 
P~(N) at t = 0  to Pf(N) at t = ~ .  The question is: what about the inter- 
mediate P(N, t)? 

We here postulate that the intermediate P(N, t) remains very close to 
a Gaussian shape. The effective result then is that the "peak" of the 
postulated Gaussian distribution function P(N, t) is being moved along by 
the potential V from the initial position of N = 0 to the final position of 
N = Gf. With these observations, a general solution for Eq. (14) is sought 
which is of the form 

P(N, t) = Po e-a~ (15) 

The equation of motion for f ( t )  is found by substituting Eq. (15) into 
Eq. (14). After cancelling the common exponential factor, 

d 
2aoK( V) - t  [ N -  f ( t )]  ~ f ( t )  

= --e --a~ __ eao(N--G(g)  ) _~. e - a o [ N - G ( V ) -  1 ] -ao[  - -2(N-- f ( t ) )  + t ] 

..[.. eao[N--G( V) + 1] --ao[2(N-- f( t))  + l ]  

= 2 cosh[ ao( 2f(t) - N - G(V) ) ] - 2 cosh[ a o(N - G(V) ) ] 

= 4 sinh[ ao(f(t) - G(V) ] sinh[ ao(f(t) - N) ] 
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Rearranging, 

K(V) -~ d 2 s inh[ao( f ( t ) -G(  V))] s inh[ao( f ( t ) -N)]  
f ( t ) =  - [ a o ( f ( t ) - N ) ]  (16) 

Equation (15) expresses the population distribution function P(N, t) in 
terms of a Gaussian function centered at f ( t )  which evolves in time obeying 
Eq. (16). Further simplification to rid Eq. (16) of N is possible. Of all the 
states N ranging from - ~  to + ~ ,  only those within close proximity of 
the moving "peak" are of interest since they are the ones with appreciable 
non-vanishing magnitudes of P(N, t). Using the standard deviation 
a = 1/2v/~0 of P(N, t) as a "rough" measure of proximity, one proposes 

A s s u m p t i o n  2. For practical interest, 

If(t) - G( V)I < 5a, If(t) - NI < 5a (17) 

Assumption 2 basically states that the distance travelled by the Gaussian 
"peak". should be within a few (here we used 5, the number can actually be 
much larger depending on ao) lengths of the standard deviation of P(N, t), 
and that the range of interest for N should also be a within few standard 
deviations from the instantaneous "peak" location f( t) .  Inequalities (17) 
can be further expressed as 

lao(f( t) - G( V))I < 2-5' 
5 

lao(f(t) - N)I < 2"a (18) 

Physically, the standard deviation a of P(N, T) is expected to be large. 
Hence, 

lao(f( t) - G( V))I << 1, Jao(f( t)-N)J << 1 (19) 

and the right hand side of Eq. (16) can be approximated by the first term 
of its Taylor series expansion, 

K ( V ) _  1 d f (  t) = 2ao[ G(V) - f (  t) ] (20) 

Equations (15) and (20) together constitute an approximate solution for 
Eq. (14). They yield the exact results P(N, t)= Pi(N) and P(N, t)= Pf(N) 
of Eq. (14) for the special cases of when G( V= 0 )=  0 and G( V= Vf)= Gy. 
It is important to note that in general the functions K(V) and G(V) in 
Eq. (20) are actually implicit functions of the transmembrane potential 
V(t). The transmembrane potential V(t) determines the rate constant 
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Fig. 2. Numerical solution of Eq. (14) at t---0, 1, 3, 5, and 10 msec. 

K(V(t)) and the "driving" function G(V(t)) which together gives the time 
dependent behavior f ( t )  from which P(N, t) is obtained by Eq. (15). 

When assumption 2 is satisfied, the solution of Eqs. (15) and (20) con- 
stitutes very close approximation to the exact solution. As an example, 
Fig. 2 shows the solution to Eq. (14) obtained numerically using the Matlab 
(Version 4.2c) Toolbox command ode23 for the case where a o=0.01, 
K( V= V I) = 20000, and G( V= V s) = GI= 20. It can be observed that the 
exact solution indeed takes the form of a moving Gaussian distribution as 
according to Eq. (15), and the instantaneous peak position of the Gaussian 
distribution is also predicted accurately by Eq. (20). Assumption 2 is 
satisfied in this example. It will be shown later that assumption 2 holds true 
for the experimental results as well, and hence the use of the approximate 
solution is well justified. 

The last assumption in obtaining an approximate solution for the 
potassium channel concerns the conductance of the macromolecules. 

Assumption 3. 
N is given by 

The conductance g(N) of a macromolecule at state 

(r)"2 
g(N) = gx e-r(N-N')2 (21) 
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Equation (21) specifies a band of conducting states as not all states are 
conducting. N* is the state of maximum conductance and r is a constant 
governing the broadness of the conducting band. gK is a proportionality 
constant. The factor (r/zc) 1/2 is chosen so that the sum of g(N)  over N from 
- ~  to + ~ is equal to gK. Substituting Eqs. (15) and (21) into Eq. (13) 
yields 

+ o o  ( ~ )  1/2 )Po e-'otf(t)-~v12 (22) gr(  t) = ~ gIr e-r(N-N* 2 
N---- - - o o  

Taking the limit as an integral yields the following expression for gr( t ) ,  

gr ( t )  = gKPo[ 1 + (ao/r)]-1/2 e-~ot:<,)-u.~/t~ + ( a o / r )  ] (23) 

The ratio (ao/r) gives the relative broadness of the conducting band and 
the Gaussian distribution. If r approaches + oo, i.e., g(N)  becomes a very 
narrow conducting band about N*~, then 

glc( t) = grPoe--ao[f(t)--~V*]2 

When the transmembrane potential V is zero, f =  G ( V = 0 ) = 0 .  The 
potassium conductance go can therefore be obtained by simply letting f = 0 
in Eq. (23), 

go = gr.Po[ 1 + (ao/r) ] - 1/2 e-aot~v'~)/t~ +(ao/r)] (24) 

Eliminating gK from Eq. (23) with Eq. (24), 

- -  N * ) 2 ] / I "  1 +(ao/r) ] gK( t) = goe"otN*' (f(t)-- (25) 

Equations (20) and (25) can be put into a more convenient form by 
redefining and consolidating the variables and constants as follows, 

L=alo/Z[1 + (ao/r)] - ' /2N*,  
~ .  

~( V(t))=a'o/2[1 + (ao/r)] -1/2 G(V(t)),  

n(t) =alo/2[ 1 + (ao/r)] - m  f ( t ) ,  

1 

T( V( t ) ) = 2a oK( V( t ) ) 

(26) 

(27) 

(28) 

(29) 
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Then Eqs. (20) and (25) become 

d 
dt n( t ) = [ a( V( t ) ) - n( t ) ]/ T( V( t ) ) (30) 

gK( t) = go ez'~-['(t)-z']2 (31) 

The problem now is to determine go, L,  and ~(V(t)) and T(V(t)) as func- 
tions of V(t) such that Eqs. (30) and (31) match the experimental data for 
potassium conductance. Determination of these parameters will be pre- 
sented in the next section. 

4. PARAMETRIC MODEL FOR POTASSIUM CONDUCTANCE 

(a) Voltage Clamp Data 

The constants go, L,  and functions n(V), T(V) can be determined from 
HH's voltage clamp data. In this case, at t = 0, V=0,  f = 0, and n(0)= 0, 
and Eq. (31) yields gK(0)= go. The value for go is hence readily deter- 
mined as the potassium conductance at t = 0 which is 0.24 m.mho/cm z. At 
t > 0, V(t) = V, T( V(t) ) = T(V), r~( V(t) ) = ri(V), and Eq. (30) yields 

n(t )  = ~( V)( 1 - e - ' / r (v ) )  (32) 

As t approaches c~, n(t = 00) approaches asymptotically to r~(V), 

gK( t  = ~ ) = go eL2-[a(v)-L]2 (33) 

and 

go 
(34) 

L and ri(V) can be found from the asymptotic potassium conductances 
corresponding to several clamp voltages. Table I shows the experimental 
data of V, gK(~) ,  and rn from HH's paper (Table 1 from [ 1 ]). Note the 
sign change of the voltages V from HH's paper. The present work adopts 
the modem sign convention for transmembrane potentials: V > 0  for 
depolarization and V< 0 for hyperpolarization. The voltages are given in 
units of mV's and the time constants in msec's. Using the values of 
asymptotic potassium conductance gK(oo) in the table and assuming 

822/89/5-6-8 
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Table I. HH's Experimental Data 

V gx(os) r. 
( m V )  (m.mho/cm 2) (msec) 

6 0.98 5.25 
10 1.47 5.25 
19 5.00 4.50 
26 6.84 3.80 
32 8.62 3.20 
38 10.29 2.60 
51 13.27 2.05 
63 15.30 1.70 
76 17.0O 1.50 
88 18.60 1.25 
00 20.00 1.10 
09 20.70 1.05 

Lo and Yam 

L = 2.7, orie obtains from Eq. (34) a set of values for ri(V) which can be 
approximated by the following functional relation, 

g(V) = 0.63 tanh (1-~.5) (v) + 0.44 tanh 77.28 (35) 

Figure 3 compares the values of rT(V) as determined from the HH's data 
and the function ~(V). A very close fit of the r~(V) data has been achieved. 
Note that ~(V) conveniently passes through the origin which is consistent 
with the fact that n ( t ) =  0 at V= 0. The choice of L = 2.7, and subsequently 
that of function ~(V), is not unique. By letting, say, L = 3.0, one would 
obtain a different set of values for r~(V) and hence a different ~(V). The 
only constraint here on L is that L 2 has to be larger than the values of 
log(gr(~)/go) in Eq. (34) to yield real numbers for r~(V). 

From Eq. (27), aoG(V) =r~( V)alo/2[ 1 + (ao/r)] 1/2. With values of ri(V) 
ranging from 0 to 1 here, assumption 2 is more or less satisfied with ao 
smaller than 0.01. This corresponds to the Gaussian distribution function 
having a standard deviation of 7 or more. From a physical point of view, 
the actual standard deviation should be much larger than this. Assumption 
2 is hence well justified. In this regards, the ratio (ao/r) is not expected to 
contribute anything appreciable. 

To determine T(V), we note that in HH's paper [ 1 ] the values r ,  are 
determined by matching 

gK(t )=[gK(oO)l /4- -[gK(~) l /4- -gK(~) l /4]  e -t/r"] (36) 
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with the rises of potassium conductances observed experimentally. Know- 
ing that the curves as generated by HH constitute very good fits of the 
experimental data, we opt here to determine T(V) by matching the rising 
conductance curves obtained with Eqs. (30) and (31) to those obtained 
with Eq. (36). The present approach could just as well determine T(V) with 
the experimental data. As a result, a functional relation between T(V) and 
V is obtained as: 

I'( V )  = O . l e  - 3 v / 1 ~  + 2 e  - vz/16~176176 + 3e  - vz/9~176 (37) 

Figure 4 compares the values of T(V) determined by matching the HH 
curves and the function T(V). Again, a very good fit of the T(V) data is 
provided by T(V). Note that the HH's voltage clamp data existed only for 
V> 0 and hence functions t~(V) and T(V) as determined are valid for 
V>0. , -- 

Figure 5 compares the rising conductance curves generated using the 
present approach with the functions ~(V) and T(V) to those of the HH 
model. The two sets of curves agree closely with each other. Notice that 
their discrepancies, though small, can still be reduced if one goes back to 
Fig. 3 and refines the function ~(V) for a still better fit of the ~(V) data. 
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Fig. 4. T(V) (circles) from HH model and the function 7"(V). 

The same procedures here can be applied to matching the experimental 
results. Though not shown here, we have checked that the original HH 
data for potassium conductances are consistent with our equations. These 
include the familiar voltage clamp curves for potassium conductance as 
well as the curves for the decay of potassium conductance after the clamp 
potential has been removed. 

Equations (30), (31), (35) and (37) form the fundamental equations 
for our theory of potassium conductance. These equations take the place of 
the HH equations. It is interesting to note the similarities and differences 
between the two different theories. Equation (30) is just the same as the 
HH equations for n(t). Equation (31) takes the place of the quartic equa- 
tion g r =  ~rn 4 in the HH theory. Equations (35) and (37) are equivalent 
to the HH equations for the ~ and fl variables which determine the n 
variable and the r,  variable. In fact, besides using a different equation for 
gr,  the structure of the two theories is essentially the same. If HH had 
chosen the function gK= goetL2-1"-L~2]=(Const)e - t ' -L)2 instead of the 
quartic equation to fit their monumental data they could have done their 
job just as comfortably as if they used their original quartic function. The 
history of the evolution of mathematical neurophysiology could have 
started this way. 
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(b)  C o l e - M o o r e  Sh i f t  

The Cole-Moore shift [2]  TCM ( Vi, Vf) as a function of the initial 
clamped potential V; < 0  and the final clamped potential Vf>  0 can be 
expressed in terms of r~(V) and T(V). Putting the solution of Eq. (30) in 
the following form: 

n(t) = ~( Vu) + [ ~q( V,) - ~q( Vu) ] e -t/T( v s) 

=Jq( Vf) + [~q(O)-Jq( Vf)] e -('-rcM(v~" vJ))/r~vs) (38) 
one obtains 

T C M  ( V i ,  V f )  - -  T ( V f )  log (/~(Vf) - n ( O  ) ) J (39) 

Equations (38) and (39) indicate a time delay of TcM( Vg, Vf) in the rising 
conductance curve for the V; < 0 case as compared to the V= 0 case. Note 
that Eq. (30), and hence the derived expression TcM( Vi, V r) of Eq. (39), is 
valid for both the HH theory and the present approach. The difference lies 
in the abilities of the two approaches to explaining the Cole-Moore data. 
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For over 30 years, the Cole-Moore shift has not been completely 
understood in terms of the HH equations. The inadequacy of the HH 
approach to account for a significant shift when the initial clamped poten- 
tial is negative lies in the unjustified use of the quartic function 
gK=(Const)n 4. Introduction of this quartic function inherently restricts 
the magnitude of the ri(V~) variable for V~ <0" if ri( V~ <0)  is big, then 
according to Eq. (30) n(t) would also be appreciable. This violates the 
interpretation that n is a probability of value between 0 and 1. Further- 
more, a large n(t) leads to appreciable conductance gK=(Const)n(t) 4 
which contradicts experimental observation that the potassium conduc- 
tance is very small for the hyperpolarized axon. Hence, ri( V~ < 0) could not 
be appreciable and should be numerically close to ri(0) in the HH formula- 
tion. Subsequently, the Cole-Moore shifts TcM( V~, Vf) by Eq. (39) would 
be very small, and not be able to fit the experimental data. 

Utilization of a Gaussian function as a replacement for HH's quartic 
function in the present formulation places no limit on the value of ri(Vi) 
consistent with the static ion conductance for Vi < 0. Here, n(t) is not inter- 
preted as a probability, but rather as the scaled (see Eq. (28)) instan- 
taneous position of the "peak" of the population distribution function 
P(N, t) which changes in time according to the Fokker-Planck equation. 
A large negative value for n(t) would still result in a very small gK= 
(Const) e -("~')-L)~. This is the essential feature which distinguishes the 
present theory from the HH theory. The Gaussian function takes the 
burden away from ri( V~ < 0) for making the potassium conductance small 
for negative static transmembrane potential, thus allowing ri( V~ < 0) to be 
any large negative value necessary to match an appreciable Cole-Moore 
shift. 

The present approach poses a distinct advantage in interpreting the 
Cole-Moore shift physically in terms of the population distribution func- 
tion P(N, t). Application of an initial negative transmembrane potential 
V~ < 0 shifts the equilibrium population distribution function in a direction 
opposite to the direction determined by the final positive transmembrane 
potential I f> O. Referring to Fig. 2, this means that the population dis- 
tribution function would start with it's peak not at N = 0 but to the left at 
a position determined by V~ < 0. Therefore, extra time is needed for the 
population distribution function to convergeto its final shape determined 
by Vf. The present theory hence provides a quantitative treatment for this 
time shift. In fact, for any given initial clamped voltage V~ <0,  a suitable 
ri( V~ < 0) can always be found by solving Eq. (39) in terms of Vf and the 
experimental value of Tc~( V~, V r), 

a(V~< 0 )=  r~( V:)+ [r~(0) - r~(V:)] e tr~*'(v,' v:)/r~v:)] (40) 
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Fig. 6. Cole-Moore simulation using the present model with V s = 50 mV and Vi=0, - 1 0 ,  
- 2 0 ,  - 5 0 ,  - 1 0 0  mV for the upper through lower curves. 

As r7( Vi < 0) is not restricted to be a positive definite quantity here, the 
right hand side of Eq. (40) can always be evaluated and therefore the value 
of rT( Vi <0 )  will always exist for given V I. The question of whether an 
unique r7( V< 0) can be found such that Cole-Moore shifts of different V I 
can be accounted for, however, still remains. Future additional tests of this 
important phenomenon are highly recommended. But as long as one is 
restricted to Cole-Moore shifts of a fixed final clamped transmembrane 
potential, as in all previous experiments, the present methodology will 
always fit the data perfectly using Eq. (39). In other words, the present 
approach sees no difficulties to fit the Cole-Moore curves. Rather, the 
Cole-Moore shifts are to determine the value of rT(V) for negative V's! 

As an example to show the sort of results obtained with the present 
approach, we assume that the function t~(V) can be extrapolated to yield 
ri( V~ < 0) and generate the conductance curves for V~ = 0, - 5 0 ,  - 1 0 0  mV 
and Vs= 50 mV. The resulting curves are shown in Fig. 6. They qualita- 
tively agree with those observed in the Cole-Moore experiments. (~5' 16j 

5. DISCUSSIONS 

We like to bring out the following points regarding this work: 
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1. Although derivation of Eqs. (30) and (31) may be tedious, readers 
who are more interested in experimental neurophysiology instead of 
statistical mechanics could have skipped the entire derivation altogether. 
By assuming the Gaussian form of the conductance function (Eq. (31 )) and 
a linear response of n(t) (Eq. (30)), Eqs. (35) and (37) as well as the Cole- 
Moore shift analysis could be deduced. 

2. The conductance function (Eq. (31)) derived here contains an 
infinite number of terms of powers of n while the quartic function in HH's 
theory contains only the 4th power. It can be shown that the quartic func- 
tion closely approximates the present conductance function for n > 0 but 
not for n < 0. This explains why the HH's theory is capable of fitting the 
voltage clamp experimental data (which lies in the n > 0 regime) but not 
the Cole-Moore shift paradox (which lies in the n < 0 regime). 

3. Numerical analysis has verified that the shape of the population 
distribution function remains largely unchanged during application of the 
transmembrane voltage. This indicates that time evolution of the macro- 
molecular system may proceed in a state of quasi-equilibrium. 

4. It is emphasized that not all approximations are needed to derive 
from Eq. (12) the HH like equations. However, such process is valuable as 
it makes the data analysis (e.g., choosing the correct equilibrium constants 
and functions) much easier and relates current electrophysiology with 
statistical mechanics. 

5. Equation (21) assumes a Gaussian distribution for the conduc- 
tance over the state N. One may point out that single channel recordings 
have shown that the channels are either completely open or completely 
closed. Hence the conductance may not vary in the way proposed here. 
Equation (21), however, may be interpreted as that each state N has 
specific open and close probabilities so that the net time averaged conduc- 
tance has the assumed Gaussian distribution. Instead of a Gaussian dis- 
tribution, one may also assume a band of uniform conductance for g(N) in 
Eq. (21). In this case, Eq. (23) will involve the Error functions. 

6. We acknowledged the fact that the present model has been applied 
to analyze only one set of experimental data, that of HH's. It is unclear 
whether the model will be supported or contradicted by other data. 
However, given that the present model work so well in the depolarization 
region (V>  0), we feel strongly that it can accommodate other experimen- 
tal results previously supported by the HH model. The added advantage of 
the present model is, of course, it's purported validity for hyperpolarization 
region (V<0) .  We would strongly encourage researchers in the field to 
apply the present model to their experimental results. 
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7. To arrive at the equations describing potassium conductance, the 
rate function a(V) is assumed constant in Eq. (12). It is plausible that by 
letting a(V) changes with voltage, equations describing the sodium inactiva- 
tion phenomenon can be derived. This work is presently under investigation. 

6. C O N C L U S I O N S  

This paper shows from first principles derivation of a Fokker-Planck 
equation describing the potassium conductance macromolecular system. 
A close approximate solution to this equation is proposed and leads to a set 
of HH-like equations. The new equations have essentially the same structure 

- -  ( n  - -  L )  2 as the HH theory but utilize a Gaussian function g K - ( C o n s t ) e  
as a replacement for HH's quartic function gK= ff, K n4. Instead of being 
interpreted as a probability value in the HH theory, the variable n(t) is 
now interpreted as the (scaled) instantaneous position of the "peak" of the 
population distribution function P(N,  t) which changes in time according 
to the Fokker-Planck equation. The new equations are physically more 
fundamental in the investigations of ion conductance macromolecular 
systems than the HH equations. They not only agree well with the HH's 
voltage clamp data but are also capable to quantitatively explaining the 
important Cole-Moore effect. 
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